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Counterion-mediated attractions between like-charged fluid membranes are long ranged and nonpairwise
additive at high temperatures. At low temperatures, however, they are pairwise additive, and decay exponen-
tially with the membrane separation. Using a simple model for the electrostatic attraction between like-charged
surfaces, we show that the nature of these attractions is determined by the dominant modes of fluctuations in
the density of counterions. While the nonpairwise additive interactions arise from long-wavelength fluctuations
and vanish at zero temperature, the short-ranged pairwise additive interactions arise from short-wavelength
fluctuations and are stronger at low temperatures.
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I. INTRODUCTION resent a simple model for electrostatic attractions between
p p _
like-charged surfaces. First of all, we must emphasize that
Counterion-mediated attractions play a significant role inthere is no way to reconcile the two completely, since the
many physical and biological phenomdia-11]. The classic  regimes they represent are separated by a phase transition,
example is DNA packaging in bacteriophadé&s6]. These i.€., crystallization. To avoid this difficulty, we restrict our-
attractions are also responsible for the formation ofSelves to the regime above the freezing temperafR&.
microtubule-actin bundles, which control the shape andEven in this case, there exists a short-range attraction arising
movement of cell§7]. These attractions can also be crucial from structural correlations as will be detailed later. To this
in promoting adhesion and fusion of biological membraned; We use an approximate modsee Eq.(2)], which is
[12]. Another important, but less understood, example is th&iMilar in spirit to the previous modes first proposed in Ref.
stabilization of cell membranes against rupture by multiva 22], that can approximately capture the essential physics

lent counterion$13]. Accordingly, significant effort has been transparent in bc_)th cases, our thepry recognizes low-
: . . : Co temperature ordering as a phase dominated by charge fluc-
expended in developing a practical way of investigating th

. ) ) he Suations at short-length scales, rather than an ionic crystalline

_nature of coupterlon-med|ated attr_aqnons. In addition to arbhase below the freezing temperature. This is invoked by the
integral equation methofl4], two distinct approaches have .t that charge correlations decay monotonically at high
emerged. The first approa¢ts,16, based on a fluctuation yemperatures, and cross over to oscillatory decays as the tem-
picture, suggests that attractions are mediated by correla‘te‘%r‘,ﬂure decreases. Eventually the decay length diverges at
fluctuations of ion clouds of counterions. This approach ispe spinodal to an ionic crystal—this is where the high-
consistent with our conception of counterions as quctuatingemperature “liquidlike” phase becomes unstable to the for-
objects, and thus merits significant considerafitj2,4,8,9.  mation of an ionic crystal. While monotonically decaying
In the second approach, based on a zero temperature pictusgrrelations are driven by thermal fluctuations, oscillatory
[17-21], the appearance of the attractions is attributed to theorrelations mainly arise from charge fluctuations at short
strong structural charge correlations that drive the systems$gngth scales and are reminiscent of low-temperature order-
together with counterions, into an ionic crystal. Due to itsing, since their amplitude increases as the temperature is
simplicity, this approach was also used extensiyéy—21]. lowered. However, it should be noted that our calculations
At first glance these two approaches appear to be contradieaay not provide much insight into the nature of counterion
tory to one another, but there is some evidence that they caordering at too low temperatures. While a complete approach
in fact, be complimentary22—24. Despite this, there still is not available, our calculations can form a first step toward
remain fundamental discrepancies between the two that hav#ling the gap between the existing approacheg], and
yet to be resolve{i25]. For the case of two planar surfaces astimulate further investigation into this highly nontrivial
distanceh apart, the charge-fluctuation approach leads to aproblem. The main advantage of our approach lies in that it
attractive force that scales 53 [8,9), as long ash is suf-  is well suited to many-plate systems and can easily be gen-
ficiently large. In the zero-temperature picture, however, theeralized to rodlike systems such as DNA and other highly
attraction decays exponentially with [17]. Furthermore, charged polyelectrolytes. It also allows one to study charge
when applied to many rod system®,23,26, the charge- correlations systematically.
fluctuation approach suggests that interactions between rods Using our model, we show that the nature of the attrac-
are not pairwise additive, while the exponentially decayingtions is controlled by the dominant modes of fluctuations in
interactions between plates as implied by the zerothe density of counterions. At high temperatures, the attrac-
temperature approaches are pairwise additive. A unified deaions are dominated by long-wavelength fluctuations, and are
scription of these attractions has so far been lack&¥. long ranged and nonpairwise additive. In this case, in-plane

Inspired by the gap between the two existing theories, weharge correlations decay algebraically in space. As the tem-
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perature decreases, the high-temperature behavior crosdesnd, the(negative backbone charge is assumed to be uni-
over to one determined mainly by short-wavelength fluctuaformly smeared out in the latter—it is only counterions that
tions, as characterized by in-plane charge correlations thafive rise to charge fluctuations. In our approach, the finite
are oscillatory. The resulting interactions decay exponensize effect is crucial in ensuring finite-charge fluctuations at
tially in space, and are approximately pairwise additive. Filow temperatures. In contrast, counterions can crystallize in
nally we obtain a phase diagram to depict the two distinctivehe latter case even if counterions are pointlike. However, it
regimes characterized by the corresponding dominant modeshould be noted that the backbone charge is treated differ-
ently there. This may make the comparison between the two
Il. MODEL AND FREE ENERGY obscure. Despite this, the exponentially decaying attraction,
. ) ) as supported by the zero-temperature picture, is a generic
The system we consider here consistsNofegatively  feature of counterions mediated attractions at low tempera-
charged parallel membranes with neutralizing counterionsyres, even though the precise dependence of the strength on
assumed to be localized in the plane of the membrane. Th?]e temperature can be model Speciﬁc_ In fact, in_p'ane
main purpose of the present work is to study the crossovegharge correlations should oscillate at low temperatures no
from the high-temperature results for the membrane attragmatter what model is used. In Appendix A, we argue that the
tiOI’lS to the behaVior eXpeCted at |OW temperatures. Since th&traction decays exponentia”y as |0ng as the in_p'ane Charge
crossover occurs at low temperatures or at high densities @forrelation oscillates. The main purpose of this paper is to
counterions, the assumption of localized counterions is reagiscuss how these distinct behaviors of the electrostatic pres-
sonable. Thus this approximation inevitably leaves out dissyre arise, rather than to attempt to completely reconcile the
cussions about the appearance of a short-distance I’egime mO exsisting approacheS, i_e_7 the fluctuation and zero-
1/h pressure f0|h<)\, ariSing from delocalized counterions temperature approaches_ Nor do we exp|ore the role of crys-
[9,10,29. The charge distribution on a laygis described by  tallization in determining the electrostatic attraction.
the local surface charge density,(r,)=—em+emZ, We find that the charge-fluctuation contribution to the free
wheree is the electronic chargem;,m,=0,1,2,3,... are the energy per area i31]
number of backbone charges and counterions per unit area at

r, =(x,y), respectively and is the counterion valency. The AF 1 dk g(k,)
l - = f 22| lodldetQ(k )] -N=5==, (2
1

interaction Hamiltonian is simply kT 2

H= i % f f dr.dr’ ai(r)a(ry) ) where\ "1=27(1+ Z)l g0, estimates the strength of charge
2eif=1 L L‘/(U—ri)zﬂLh?—’ fluctuations, —eo is the surface charge density, ahgl
! =e?/ekgT is the Bjerrum length, i.e., the length scale at
wheree is the dielectric constant of the solvent, amdis the which the electrostatic energy between two charges is com-
separation between plateis and j. Here we use two- parable to the thermal energy. The mat@Xk, ) is defined
dimensional Debye-Hikel (DH) theory for systems of ions by the matrix elements
with internal structures, i.e., charge correlations over the
ionic sizeD, as in Refs[22-24. It should be noted that DH
theory for point charges fails to capture the strong charge
correlations at low temperatures. This defect in the DH
theory has been corrected in an approximate way by takinwhere g;;(k,) is g(k,)=[2J,(k,D)/k,D] if i=j and 1
into account short-ranged charge correlations over the size atherwise, and;(x) is the first-order Bessel function of the
ions[22-24. We thus implement DH theory with counterion first kind.
size via the two-dimensional form factg(r, ,r|)=0(]|r, First note that the free energy of &hplate system is not
—r'|—D)/«D?, whereD is the diameter of the counterions. Simply a pairwise sum of the corresponding two-plate results
This is to capture the discrete nature of ions in the continuun@ver all pairs of plates. Thus pairwise additivity is mbiays
description of charge fluctuations and thus to ensure finit&atisfied. For thé\=2 case, our result in E¢2) reduces to
charge separation at loW that the DH theory for point the previous two-plate resulsee Eq. 3 of Reff9]), if D is
charges suppresses, wharés the temperature. However, it Set to zero. If we seb to zero, the free energy has a single
should be noted that this remedy does not naturally give risglinimum at a nonzero valuie, =k <1 A~* for all values
to a hard core repulsion between the plates, since it ignoredf . The dominance of the long-wavelength charge fluctua-
the ionic size perpendicular to the surface. Further considettions is responsible for the breakdown of pairwise additivity
ation of the nonzero ionic size is thus certainly warrantedof electrostatic interactions between macroions. It has been
Neverthless, this approach led to charge correlations in qualshown that pairwise additivity for the case of charged rods
tative agreement with known results, when applied to arbreaks down if the expansion of the corresponding interac-
electrolyte solution consisting of positively and negativelytion free energy in powers df; diverges[1,2,23. For rod
charged spherg22]. systems, the free energy is dominated by the kenoede,
The major difference between the approach we adoptednd thus this expansion convergesy whenthe charge fluc-
here and the one used in the zero temperature approathation along the rods is sufficiently small. The convergence
[17,21] is that we put positive and negative ions on an equabf the |z expansion can be tested by estimatify
footing, as is the case for fluid membranes. On the others (k) I\ ~1; thelg expansion is convergent #< 1. How-

gij(k,)

Qij(k )=+ e~ kuhi, ©)
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Already transparent within our theory are the existence of a
crossover from the high-regime to one dominated by short-
wavelength fluctuationgndthe interplay between the domi-
nant modes of charge fluctuations and the nature of the cor-
responding interactionsee Eq.4)]. Thus in this paper we

do not attempt to accurately capture the effect of [bw¥-
dering on the membrane interactions, and may leave out
many subtle features of low-ordering below the freezing
transition [28]. Even though the region ~=\;" is cer-
tainly beyond the validity of our theory, it is nevertheless
interesting to see what our theory implies for that region.
Notably, the free energy curve corresponding Xo?!
=10A"1 has two local minima at large, =O(1 A~1). The
existence of multiple minima at large, assures that the
system is in a solidlike phase.

Our results in Fig. 1 imply that there are two distinct
contributions to the free energy: long-wavelendtiv) fluc-
tuations and short-waveleng{BW) fluctuations in the den-

FIG. 1. The free energy between two plates separated by Sity of counterions. They also imply that the SW fluctuation
=5A, as a function ok, . We have chose® =5 A. When\ 2 contribution to the free energy has a much narrower peak if
=1A"L, the free energy has only one minimumiat<1 A%, N~ '>5.9A"1 This enables us to separate the SW contribu-
while when\ ~2=5.9 A~1 the free energy has another local mini- tion from the LW contribution. By noting that *." does not
mum atk, =k]=0(1 A~Y). When\x"1=7 A~1, the second mini- change appreciably over the region inside the peak, at

mum at large k, is overwhelmingly dominant. Whem ! :kf, we find, up toh-independent terms,
=10A"! the free energy has two local minima akt,
— >
=0(1A Y. keT £(3) kgT e 2N
AFzz -

ever, we find tha® is smaller for smaller values of ! and 16w h* 87 \°
is comparable to unity ik ~*<1073. Thus the pairwise ad- k. dk,
ditivity can easily be violated in two-dimensional systems, as J - =T 1 5,
in one-dimensional cases. k =k [1+K A" g(k,) ]

4

A. Two-plate case where/(x) is the zeta functiofthus £(3)/16m7=0.024].
. L , . The first term denoted b¥y, is the free energy calcu-
At low T or at high oy, it is crucial to incorporated 5164 withD set to zerd8—10,33 and is the LW free energy.

#0 [22-24. To examine the lowF behavior of the free o, revious analysis of(k,) implies that the SW free
energy(thus with D set to a finite valug we consider the energy denoted bf gy, i.e., the second term in E¢4), is

following quantity:Q(k, )=k, logldetQ(k, )] for N=2,i..,  gominant overF,,, at low temperatures\( 1>5.9 A1),

the first term in{...} of Eq. (2) for N=2 multiplied byk, . In" 514 gecays exponentially in space. This exponentially decay-

Fig. 1, we plot this quantitQ(k, ) as a function ok, for g interaction is analogous to the previous z&roesult

several d|fferent7\ialues 91( We have chose=5A and [17]. There can, however, be ambiguity in drawing such an

h=5A. <\Nhen)\ _ _:1'8_‘ » Q(k.) has a single minimum  5n310gy: our model treats backbone charges, and their coun-

atk, =k <1. This implies that the free energy is dominatedterions on arequalfooting, while the zerdF approach con-

by long-wavelength charge fluctuations as in the previousiders counterions confined on a uniformly charged surface.

case of point charges. We find that the functi@(k,) has  pespite this, the exponential decay appears to be a universal

two minima at k, =ki<1A™' and at k, =k feature of the attraction at loW, though the prefactor can be

=0(1A™1), respectively, fon ~*>4.2A7* (not shown in  model dependentalso see Appendix A At high tempera-

the figurg. As A ~* changes, the minimum &t =k, varies  tures corresponding to 1<5.9 A1, however, the free en-

monotonically, and is deeper for largert. The minimum  ergy is mainly determined by, . In this case, the fluctua-

at k, =k, however, is roughly independent af When tion contribution to the pressure between the two plates

A" 1=~59A"1 the two minima are comparable in magni- scales as- h~3[8-10,33. Also note that this LW contribu-

tude. Whem ~1=7 A~1, the functionQ(k, ) is overwhelm-  tion vanishes al =0. This follows from the fact tha®(k)

ingly dominated by the second minimum kt=k;, as is roughly independent ok. To estimate the temperature

shown in the figure. dependence df g, note that the prefactor of this term var-
At A" t=);1=7.2A"1 the second minimum diverges. ies asT '. Thek, integral of this term depends on the depth

This is suggestive of the onset of crystallization of counteri-and width of the second minimum d®(k,) at k, =k; .

ons, where the highi-liquidlike phase is unstable to the for- While the width is roughly independent affor givenh, the

mation of an ionic crystal. However, our theory does notminimum becomes deeper with the increasing® (or de-

accurately describe the system nead beyond this point. creasingT). This proves thaFg,, is more negative at low
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12 ——— I1l. ASYMPTOTIC ANALYSIS OF THE FREE ENERGY:
r N-PLATE CASE
10 - ] We have shown that the nature of counterion-mediated
- 1 attractions between two like-charged plates is dictated by the
gL ] dominant modes of counterion-density fluctuations. We now
—_~ r 1 consider a system oN-parallel plates that are equally
o< - spaced, i.e.h;j.;=h. The nature of interactions between
~ 6 - _ .
L plates also depends on the dominant modes of charge fluc-
— r ] tuations as in two-plate cases. At high temperatures, the free
4r B energy is dominated by LW fluctuations. In this case, the
L interaction between the plates is nonpairwise additive. Inter-
o[ _ estingly this makes it possible to describe the system in
i 1 terms of bullk and surface free energies,
00 10 AFB‘:Nfbulk"’fsurfac(—:ﬂ'O(l\rl)a N—>°°, (6)
[+
-1 (A'l) wheref,, andf g, rceare, the bulk and surface free energies,
cr given by
FIG. 2. Phase diagram for two plates. The regimes where long-
and short-wavelength fluctuations dominate are denoted by LW and fou— —kgT h=2,
SW, respectively. Only when 2.78<)\"!'<7.6 A~1, the cross-
over between the two regimes takes place for a finite valle Af furtacs~ ke Th™2, !

N"1=2.7A"1, marked by the vertical dotted line on the left, the
SW contribution vanishes, while the LW term becomes vanishinglyrespectively, note that both, , andf,.ccare larger in mag-
small at)\;l, marked by the vertical dotted line on the right. These njtude at high temperatures.
results suggest that the SW fluctuations solely determine the plate |f e calculated the free energy by summing over all pairs
interaction beyondhy'=7.6 A™%, but this region is beyond the of plates using the two-body long-wavelength interaction
validity of our theory and should not be taken literally. given in Eq.(4), then we would obtain a free energy given as
follows:
than at highT, as opposed t& .y .
AF paimise~ ke T(=N+logN)h ™2, N—. (8)
B. Crossover from high-T to low-T behaviors
It is tempting to identify the first and second terms as bulk
and surface free energies respectively. In a strict sense, how-
ever, this calculation does not lead to a well-defined surface
free energy. Thus the breakdown of pairwise additivity en-

For a given value oh, there exists a special valug, at
which the crossover betweds, andFg, takes place. By
requiring @/ oh)(Fiw—Fsw) =0, we have the following

transcendental equation fag, : sures the existence of the thermodynamic limit in this sys-
2 h 1 tem. Also the free energy calculated explicitly is more nega-

(Z)@ e 1 k, "dk, (5) tive than that based on the assumption of pairwise additivity

2) ki h3 N2 S aei+ko g Tgk )1 for largeN. In fact, charges are more efficiently correlated in

the explicit calculation, resulting in a lower free energy.
To solve the transcendental equation, we have ch@en At low temperatures, however, the interactions between
=5 A Figure 2 describes distinct regimes characterized b}he plates are domlnated. by SW charge fluctuations. In this
the corresponding dominant modes of fluctuations, and th&2Se: only the nearest pairs of the plates couple strongly, and
crossover boundaries between them: the regimes where thgUS the resulting interactions are approximately pairwise ad-
LW and SW fluctuations dominate are denoted by LW andditive. Consequently both the bulk and surface free energies
SW, respectively. When~! is smaller than 2.7 Al, the vary ase 2" |t is obvious that the magnitudes of these
plate interaction is solely determined by the LW fluctuationsterms are larger at low.
for the whole range oh. At A "1=2.7 A", marked by the
vertical dotted line on the left, the SW fluctuations start to IV. CHARGE CORRELATIONS
contribute to the plate interaction. When 2.7%&<x\"! o o _
<7.6 A1, however, the plate interaction is determined by The appearance of two distinctive competing interactions,
the competition between the two; the crossover from the LW-€., Fiw andFgy, can also be understood in terms of in-
to SW regime takes places for larger valuehadt low tem-  plane charge correlations for a single pla@;(r, ,r/)
peraturegcorresponding to largex ~1). Our theory implies =(a(r, )a(r!))—(a(r.))a(r])). The long-wavelength
that the SW fluctuations solely determine the plate interaceontribution to the charge correlation was shown to scale as
tion beyonday*=7.6 A~1 [32], but this region is beyond Gy(r, ,r|)~—kgT/|r, —r||®for large|r, —r|| [33]. Note
the validity of our theory and warrants further consideration.that this correlation vanishes as-0. Our result in Eq(2)
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FIG. 3. The leading poleSk, as a function ofx=D/\. The
solid and dotted lines correspond to the real and imaginary parts
respectively. Ay (corresponding ta "=\ '=7.6 A~1), marked r_J_
by the vertical dotted line, the correlation is no longer damped, and
the system crystallizes.

FIG. 4. One-dimensional illustration of typical fluctuations in
the counterion density. The thin dotted lines are to guide the(aye.
. . . . At high temperatures, LW fluctuations are dominant over SW fluc-
!mp!les that the short-wavelength charge correlation functloquaﬁonsy leading to power-law pressurés) Near the crossover
is given by boundaries, both LW and SW fluctuations contribute to the free
energy. Within each counterion-rich or-poor domain, counterions
tend to develop local positional ordering. Due to the presence of
many competing length scales, the electrostatic pressure in this case
does not assume a simple scaling for(). At low temperatures,

, , 0'062
Gsw(ry,ry)=00g(r, ,r;)— 2

k. dk, a(k however, SW fluctuations are dominant, as characterized by oscil-
Ldkog(k,) , X . )
Jo(k [ri=r], (9 latory charge correlations. There is thus strong cancellation between
ki #0 Aky repulsions with attractions, leading to an exponentially decaying
a(k,) pressure.

At high temperatures, LW fluctuations are domingat

where Jy(X) is the zeroth-order Bessel function of the first typical mode of LW fluctuations is illustrated in Fig(a}],
kind. Unlike G (r, ,r}),Gsw(r, ,r}) is determined by the and thus we can consider each plate to consist of large do-
nature of the poles df1+\k, /g(k,)]* (note thatJy(x) mains, i.e., counterion-rich and counterion-poor domains.
~ 27X co§x—(ml4)] for largex.). The size of the domains is on the order k) 1>1A, and

In order to analyze the leading behavior®§,,, we find  thus these domains can form huge dipoles, as manifested by
the polek, that is closest to the origin in the compléx power-law correlations. This results in a long-ranged attrac-
plane. We have plotted the results in Fig. 3 as functions ofio" Petween charged surfaces. The long-wavelength fluctua-
x=D/\. Notably, our results in Fig. 3 imply th& g, shows tions coup!e_ over many plates, leading to breakdown of pair-
an oscillatory decay: the real part 8, , denoted by R¥, , wise additivity [34]. Near the crossover boundary, SW and

which controls the wavelength of the oscillation, is describe W fluctuations are equally important, as schematically

L . ) . ' hown in Fig. 4b).
by a solid line, while the imaginary part, which sets the In contragst, each domain at low temperature becomes

decay Ien>gt'h, is a dotted line. Note that’Re is essentially  gyerall charge neutral, and thus the distinction between do-
equal tok; in the limit of h—oc. As x (thus\ ") increases, mains is meaningless. In this case, the local correlation be-
the wavelength of the oscillation decreases, while the decayyveen a counterion and a backbone charge in its neighbor-
length increases. At=xyx=38 or)\‘1=>\;127.6 A-1[32], hood dominates the free energy, as illustrated in Fig).4
marked by a vertical dotted line, the imaginary part vanishe§ here is thus strong cancellation of repulsighstween like
and the decay length diverges, signaling the onset of crystathargey with attractions(between opposite charges his
lization of the counterions. The temperature dependence dgesults in an exponentially decaying, short-ranged attraction
the amplitude of the charge correlation can be estimated iRetween the plates.

the same spirit as in the short-wavelength plate interaction.

We find that this amplitude varies asT [1 V. CONCLUSIONS
+(REk ) N g(RP k)]t and is larger at low tempera-  In conclusion, we have introduced a model for describing
tures. counterion-mediated attractions between fluid membranes.
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We have shown that our model can capture the essentiabnditions are model-specific, as argued in Appendix A.
features of these attractions at both high and low temperaFhus all these models lead to a qualitatively similar picture
tures. At high temperatures, these interactions are dominatddr the attraction.

by LW fluctuations, and are long ranged and nonpairwise Counterion-mediated attractions play a key role in such
additive. Charge densities of biomembranes range fronphysical and biophysical processes as membrane adhesion,
—0.03/nm to —0.24e/nn?, corresponding to LW regimes Packaging of DNA into a compact bundle, and aggregation
at room temperature; two adjacent lipid head groups ar®f charged colloids. Due to the simultaneous presence of a
separated by a distance between 20 and 60A, much largéng-ranged repulsion, arising from the net charge carried by
than the Bjerrum length, and the positional ordering betwee®NA, and an attraction induced by counterions, there is a
the lipids and their counterions can easily be perturbed bjree energy barrier to bundle grow86]. As it turns out, this
thermal fluctuations. In order for crossover to take place aParrier essentially determines the sidee., the cross sec-
room temperature for the cage=2 andD=5 A, two adja-  tional diameter of DNA bundles in the case of DNA pack-
cent charged lipids should be within a length 6], which ~ @ging. In colloidal systems, this barngr can stab|I|z¢ the sys-
is somewhat smaller than the typical size of lipid headss ~ tém against coagulat_lpn. Both the he!ght and location of the
A). Many-body, nonpairwise additive interactions thus Oloerbarrler can be sensitive to the dominant modes of charge

ate between charged membranes at room temperature unldéictuations(i.e., either LW or SW fluctuationssince differ-
the counterion valency is too large. ent modes induce different types of attractions. So far we

In contrast, the membrane interactions at low temperahave restricted ourselves to the case of no added salts. Our

tures are dominated by SW charge fluctuations. The resultinfieoretical scheme can readily be generalized to the case of
interactions are pairwise additive, and decay exponentialljdded salts as in real biological settings. We leave the study
with the membrane spacinighe nonpairwise additive inter- of salt effects on the aggregational behaviors of macroions
action becomes smaller, and eventually vanisheg,-a®).  for future work.

The approach presented here allows one to systematically

study the crossover, as the temperature decreases, from the ACKNOWLEDGMENTS
high-temperature, long-ranged attractions to the behaviors ! . L . . .
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not needed to ensure finite charge separatiofis=ad. In our
theoretical scheme, we assume that the membrane charges APPENDIX A

are also mobile in the plane of the membrane surface, con- ) ) , )
sistent with our conception of membranes as a two- In this appendix, we argue that the electrostatic attraction

dimensional fluid, and the finite ionic size is certainly neededP&tween two like-charged parallel plates a distahcgpart

to avoid collapse af = 0. The significance of the finite ionic d€cay exponentially with as long as in-plane charge corre-
size is further illustrated in Appendix B. Our model is also [&tions exhibit oscillatory decays. This can be most readily
different from a system of point charges localized to a uni-S€&n in perturbative evaluations of the attraction. To this end,
form neutralizing surface, the so called Wigner crystal'Veé write the interaction Hamiltonian for the two-plate sys-

model. It was showii27] that a finite size of the ions is not €M as
required in this model to ensure a nonvanishing attraction at
T=0. This model is similar to the case of pinned charges in Ho=Hyrt Hoot 2Hia, (A1)
that the background charges ap@enchedlf the background
charges were allowed to relax in response to their counterivhere’;; refers to the interactions between charges on plate
ons, then this system would collapse onto a poirfa0 as | andj, i.e.,
a two-dimensional ionic fluid does.

Despite this apparent distinction, all these models, includ- 1 o oy(r)ay(r))

Hij:z_éf f drler

ing ours, rely on an assumption that prevents the system m (A2)
from collapsing onto a point aE=0. In the case of a fluid st N

membrane, it is certainly the ionic size that prevents the col- hereh- =0 andh. .. = h. When th tion bet th
lapse. In the case of quenched backbone charges, this cdl;'€€Mi — b andn;.; =n. ¥vhen the separation between the

lapse can be prevented by a constraint enforced on the bach-ateS is somewhat larger than the average distance between

bone charges; the backbone charges do not respond to aP(go adjacent charges on_the same plate, we can corisiger
a perturbation. In this case, the free energy can be ex-

change in temperature and counterions. No matter what ded
model is used, however, the exponentially decaying pressuﬁ%an edas
is a generic feature of the electrostatic attraction between 5
like-charged surfaces at low temperatures, even though the A 2 4

. S Fo=—=(H7,) + O(H7,) +const, A3
temperature dependence of this attraction and thus crossover 2k T< 12+ O0(H:) (A3)
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where const refers th-independent terms. The leading term 0, for 0<r,<D
in AF, can be written in terms of the in-plane charge corre-

2 —
lation G(r, ,r!) introduced in Sec. IV, evaw(n = %‘I’(r)5(z), for r,>D. (B1)
<H§2>: kB_;rj f f J dr, dr/dr”dr” Here we are particularly interested in the electric potential in
A the plane of the surface)(r, )=V (r, ,z), since this will
. o essentially determine in-plane charge separations. To under-
% G(ro,ri G(ri,ri) stand lowT properties ofy(r,), note that\ "'—w asT
\/(rj—rj’)2+ h?2 \/(fi—h)2+ h2 —0. Sincey(r,) is a continuous function of , , the left
hand side of Eq(B1) should be finite. This requires that, for
KT o2k r,>D, #(r)—0 asT—0. Thus the counterion charge is
:izz |G(k,)|>——5—, (a4)  thus more efficiently shielded by the ionic cloud at low tem-
A G ki peratures. In fact, it has been shown that,rfor- D, ¢(r ) is

given by[38]
whereG(k, ) is the Fourier transform o&(r, ,r}).

When the in-plane charge correlation is dominated by an — l(r_l)
oscillatory decaywith the wavelength 2/k;"), G(k,) has a [ eZ)[A 2w\ N
sharp peak ak; . In this case, the interaction between the ==l \p ] (D D\

BRI

r
two plates is well approximated by the leading terthigh-

order terms decay faseiUp to anh-independent constant, ) " (B2)
the two-plate interaction per unit area is

whereH ,(x) is the Struve function, an¥d,(x) is the Bessel

e—2k7h function of the second kind. For the case£0, (r )/T
AF,=—KgTH(T) —5—>—, (A5) decays ag/r® asT—0. This implies that the charge corre-
AKT lation decays linearly with decreasifigreminiscent of van-
ishing charge fluctuations dt=0.
where we subsummedi-independent factors intd(T), Charge separations or charge fluctuations can be quanti-

which is a function ofT. This result is illuminating; the ex- fied in terms of multipoles. For example, the mean square of
ponentially decaying attraction is a generignodel- the electric dipole produced by charge fluctuations is given
independentfeature of the electrostatic attraction betweenby
like-charged surfaces at low temperatures where the in-plane
charge correlation oscillates. The temperature dependence of b A A
this gttraction and thus crossover coFr)1ditions arg, however, M2:f j drodrir,ri((r,)o(r)). (B3
model specific.
Thus the magnitude of:? is directly related to the charge
correlation:(a(r, )o(r])). Note here that the contribution
from r, =r is omitted in the integral. Equatior®2) and
Our theoretical scheme relies on the finite size of ions. IB3) imply that the electric dipole decreases to zeroTas
this appendix, we further illustrate the significance of this—0. In the Debye-Hakel approach, which retains fluctua-
effect in ensuring finite charge separations at low temperations at the Gaussian level, it is straightforward to show that
tures. To this end, we consider an ionic fluid consisting ofall higher multipoles vanish ai=0. This follows from the
negative charges and neutralizing counterions of valéhcy fact that anyN-point correlation functioN must be evenis
confined to a plane, as a model of a highly negativelyrepresented as a sum of all possible product of two-point
charged fluid membrane with the surrounding counterionsfunctions, i.e., Wick's theorem. In the Debye-tkel ap-
Most of crucial properties of this system can be derived byproach, charge separations are thus completely suppressed at
holding any particular ion and examining how the other par-T=0 to all orders.
ticles respond. Since the system is electrically neutral, each When a second plate is brought close to the plate, these
ion should create around itself an ionic cloud of the oppositén-plane charge fluctuations are felt by the second plate, as
charge. To be specific, we put a counterion at the origin andlso implied by Eq.(A4)—the charge distribution on one
examine the electric potential created by this ion and thelate is complementary to that on the second plate.TAs
surrounding ionic cloud, denoted &¥ (r). The counterion —0, all multipoles induced by charge fluctuations vanish. At
is assumed to be a hard sphere of diamé&erexcluding finite temperatures, they essentially lead to the LW contribu-
other ions forr, <D. Note that this is a two-dimensional tion to the charge fluctuation free energyyy .
analog of the so called restricted primitive mod&PM) For D>0, howevery(r, )/ kgT approaches a finite value:
[37]. limr_o¥(r,)/keT—1/2mee®oo(1+2Z). This implies that,
If the plane of the ionic fluid is at=0. the electrostatic for D>0, charge fluctuations do not vanish Bt 0. This
potential at €, ,z), in the linearized Poisson-Boltzmann or model, however, suffers from a serious deficiency: it does
Debye-Hickel approach, satisfies not predict an oscillatory charge correlation at low tempera-

APPENDIX B
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tures that essentially leads to an exponentially decaying pres- e ik Ty
sure for the case of two plates. So the resulting model, i.e., lﬂ(fl):AJ dkLw- (B6)
the two-dimensional RPM cannot be used to study the cross- 1+ )\kl

L

over between the power-law pressure and the exponentially

decaying one, though this is certainly an improvement on thg, principle, the integration constaAtcan be determined by
two-dimensional Debye-Hikel theory for point charges.  requiring that the system is electric neutral. Except for
Finite charge separatiorithus a nonvanishing attractipn g(k,)=1, it is, however, formidable to implement this re-
are ensured as soon as the nonzero ionic size is incorporatgdiirement. Nevertheless, it can be shown tiét, ) in the
via the two-dimensional form factay(r, ,r). The linear- case ofg(k,)#1 does not have to vanish in the limit of
ized PB equation in this case for >D should read —0. To this end, first note that the zeke-component of
(k) decreases as the temperature is lowered, and vanishes
at T=0—note that short-range correlations are not “felt” by
zerok, fluctuations. In contrast, larde-(or SW) compo-
nents ofiy(r,) do not have to decrease as the temperature is
lowered, sinceg(k,) can take negative values; in this case,
smallerh (i.e., lowT) can correspond to a large amplitude of
Forr, >D, we find (k). This implies thaty(r ) can be larger at low tempera-
tures. In this paper, we relax the requirement that ions are
excluded forr, >D. This relaxation amounts to requiring

2
eVZ\P(r)zxfdri\I'(ri, z=0)g(r, —r}). (B4

W)= A A__lf j ar’ dr” Y(ri)g(ry—rl that A=Ze/e and so this approximation does not change the
Yor 2w L7 lro—r]] ' underlying physics qualitatively, since this will modify the
(B5) free energy in Eq(2) by an overall multiplicative prefactor.
None of our core results described by the phase diagram in
Fig. 2 or the leading poles in Fig. 3 are influenced by this
The solution of this equation is given by approximation.
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